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An approximate analytical solution of the one-dimensional conduction equation 
with a natural convection boundary condition is presented. The solution is based 
on the heat balance integral technique and possesses considerable utility. The 
accuracy of the solution is tested by comparison with an exact solution for a range 
of linear forced convection problems and with a Crank-Nicolson solution for a 
range of nonlinear free convection problems. It is demonstrated that significant 
differences can occur between the temperature responses of a solid cooled by 
either free or forced convective flow at similar Blot numbers. 
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For heat transfer processes where the surface heat transfer 
mechanism is nonlinear in temperature no analytical 
solutions exist. An approximation to such problems may 
sometimes be made by linearization of the surface 
boundary condition. This approximation is often used to 
obtain solutions for transient conduction problems with a 
natural convection boundary condition where the 
temperature dependence of the convection coefficient is 
ignored. The surrogate problem involving pseudo-forced 
convection heat transfer at the surface is then readily 
solved analytically. Under certain circumstances this 
approach can be unsatisfactory. The purpose of this paper 
is to demonstrate that an approximate analytical solution 
for the free convection cooling (or heating) of a plate does 
exist, that the solution is reasonably accurate for many 
purposes and that it is easy to use. The approximate 
solution is derived using the heat balance integral 
technique, the merits of which have been discussed by 
Goodman 1. 

Statement of problem 

It is required to predict the transient temperature 
distribution in a plate which is initially at a uniform 
temperature T~ throughout. At time t = 0 one face of the 
plate (x=0)  is suddenly subject to cooling by free 
convection. The other face of the plate (x= L) is adiabatic. 
The problem is mathematically similar to that of a plate of 
thickness 2L which is subjected to simultaneous and 
identical heat transfer at both faces. 

The assumptions are as follows. 

(1) The heat conduction in the plate is one-dimensional. 
(2) The solid is homogeneous, isotropic and the physical 

properties are independent of temperature. 
(3) The ambient fluid temperature T, is constant. 
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In terms of dimensionless parameters the problem 
may be posed as follows. 

(?0 ~20 
0~<X~<I, F > 0  (1) 

~F - 0X 2 

O(X, 0) = 1 (2) 

(?0 1 F  ~5~(, t=o (3) 

~ 0 ,  F) = B 0 / -  U)" ~< n ~< 
4 

l 3 (4) 

where the Blot number B is defined in terms of the heat 
transfer coefficient h=  C o ( ~ -  T,)" 1, in which Co is a 
constant. 

When n = 1 the problem reduces to the linear case 
of forced convection. When n = 4/3 the problem is that of 
an upward-facing surface cooling under the influence of a 
turbulent natural convection flow. 

When the conditions at the solid boundary are 
such that laminar natural convection flow occurs, then a 
local variation in the value of/~ is likely. Under certain 
circumstances, such as with low Prandtl number fluids, it 
may be acceptable to assume a spatially constant value for 
h, in which case the appropriate value for n would be 5/4. 

The components of the integral solution 
For transient conduction in the plate the integral solution 
of the energy equation for conduction in a semi-infinite 
body may be used up to the time at which the conduction 
front propagating from the heat transfer boundary 
reaches the adiabatic face. This is referred to as the 
penetration time. In the post-penetration period a 
complementary solution of the conduction equation must 
be used which satisfies the new boundary conditions 
prevailing in this period. These two components of the 
solution are derived below and are matched at the 
penetration time. 
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Trans ient  c o n d u c t i o n  in a semi - in f in i te  sol id 

The heat balance integral technique is conceptually 
similar to the integral method of boundary layer analysis. 
For a semi-infinite solid, initially at uniform temperature 
throughout, a temperature disturbance at the free 
boundary propagates in the x-direction through the solid. 
The leading edge of the thermal wave is defined to be at 
x =  6 at time t from the initiation of the wavefront. The 
descent from a partial differential equation (Eq(1)) 
through an ordinary differential equation to an algebraic 
expression and finally to a numerical result is parallel to 
the process used in boundary layer analysis. 

Eq (1) is integrated over the region occupied by the 
thermal wave, ie 0~< X ~< 6", giving: 

; aT 
0 

Eq (5) may be transformed into an ordinary 
differential equation for r/(F) as follows. First, the left hand 
side of Eq (5) may be rewritten using the general 
relationship: 

b(x) b(x) 

d~ f(x, y) dy = ~x f dy +f(b, X)~x -f(a, X)~xx 
a(x) a(x) 

Eq (5) thus becomes: 

X=c]* 

dF OdX-Ox=6*dF- fiX x=a. ~ x=o 
0 

(6) 

The next step involves the substitution of an 
approximating polynomial for O(F,X). 

Several approximations for the temperature 
distribution are possible and have been used in previous 
applications of the heat balance integral technique, but 
Langford 2 has shown that a quadratic is usually adequate 
for plane flows. 

For the present purposes the temperature 
distribution across the thermal wave is assumed to be of 
the form: 

O=ao+alX+a2 X2 where ai(F), i=0,1,2 (7) 
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at 

at 

The boundary conditions on this profile are: 

X=6*,  0=1,  0 0 = 0  
0X 

X = 0 ,  O=r/ 
These boundary conditions together with Eq (7) 

give: 

a o = q (8a) 

(Sb) 
a2  4 ( 1  - r/) 

5 "  - 2 (1  - r/) ( 8 c )  

a 1 

Substitution of Eq (7) into Eq (6) gives: 

d•[a06, 5*z 6 *3 ] + a, ~ - +  a2 ~ J - [ a o  + a16* + a26*z]d~----7 

(9) 

Using Eqs (8) and noting that: 

00 
[~ ]x= ,~ ,  = 0 and [ff-~]x=o=al 

enables Eq (9) to be rewritten as" 

2(1-r/)dr/ 2(1-r/)2dal 8(1-r/)3da2 
f ÷ 

al dF a 2 dF 3 a~ dF - - a l  ( 1 0 )  

Differentiation of Eq {8b) and substitution into 

2(1 - r/)z dal 
4-1=0 (11) 

3 a 3 dE 

Eq (10) gives: 

4(1 - r/) dq + 
3 a 2 dF 

But: 

(1-r/)2da, 1 d [ ( l - q ) / 1  (1-q)  dr/ 

al 3 dF ~ - ~ [ _ a ~ l Z  J - a z d r  

and so Eq (11) may be rewritten as: 

tt F 

2r.-.l  f 3 J  a 2 or/-3[_ a, J = -  dF 
I 0 

(12) 

Notat ion 

B Biot number, f~L/k 
Co A constant 
F Fourier number, ~t/L 2 
F* Fourier number at the penetration time t* 
/~ Heat transfer coefficient, Co(T ~-  Ta)"- 1 
k Thermal conductivity of solid 
L Plate thickness 
n Exponent in convection flux function 
t Time elapsed from start of cooling 
t* Time at which conduction front reaches adiabatic 

face 
T Temperature in solid at position x 

Ta Ambient fluid temperature 
T~ Initial uniform temperature of plate 
T~ Surface temperature at time t 
U Dimensionless ambient temperature, Ta/T ~ 
x Distance from cooled surface 
X Dimensionless distance, x/L 
ct Thermal diffusivity of solid 
fl Dimensionless surface temperature, TJTa 
)' Dimensionless initial temperature, TJT a 
5 Position of conduction front 
6" Dimensionless conduction front position, 6/L 
r/ Dimensionless surface temperature, TdT i 
0 General dimensionless solid temperature, TIT i 
2 i Eigenvalues 
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which is a general and useful form of the heat balance 
integral for a semi-infinite solid in which the surface heat 
transfer mechanism is embodied in a 1. 

For the particular case of convective cooling: 

a~ =B(q- U)" (13) 

The integral in Eq (12) with a 1 given by Eq (13) 
may be easily evaluated, resulting in the final form of the 
heat balance for a convectively cooled semi-infinite solid: 

1[ l--. ~2 2I (l--U) 
BZF =3L(v/- u-)n] +3 (2n-  1)(q- U) 2n-1 

(2n_2)(~_u)E.-2-~(l_U)2. 2 2n-2 2 n - 1  

(14) 

This is an inverse solution from which the 
dimensionless time, B2F, may be calculated for any 
chosen value of the dimensionless surface temperature q. 
The complete temperature profile is then available 
through Eqs (7) and (8). 

Estimation of the penetration time 

When the conduction front reaches the adiabatic face of 
the solid (X = 1) the use of Eq (14) must be discontinued 
and a new solution used which takes into account the fact 
that the wave is no longer propagating. Instead the 
temperature at X = 1 is changing continuously. Assuming 
that the semi-infinite solid solution applies up to and 
including the instant of penetration, F*, then Eq (14)may 
be used to estimate F* as follows: 

The boundary conditions at penetration give: 

a I =2(1 -r/*) 

where ~/* is the dimensionless surface temperature at 
penetration. 

. .  B(q*-U)"+2(q*-I)=O (15) 

which may be solved for q* by the Newton-Raphson 
method. This value of q* is then substituted into Eq (14) to 
give the corresponding value of F* and hence sets the limit 
on the use of Eq (14). 

The post-penetrat ion solut ion 

At times greater than F* the heat balance integral is 
simplified, since df*/dF = 0 and 6* = 1. 

During the post-penetration period the 
temperature profile adopts a new form, again assumed to 
be quadratic: 

O=bo+blX+bz X2, bi(F), i=0,1,2 (16) 

The new boundary conditions are that: 

at X=0, 0=r/, bl=B(q-U)" 
dO 

at X = I ,  3 = 0  

These boundary conditions together with Eq (16) 
give: 

b0=~/ (17a) 

bl (17b) b2- 2 

Substitution of Eqs (16) and (17) into Eq (6) gives: 

Substitution of Eqs (17) into Eq (18) and recalling 
that 

~X jx_o = - h i  

gives : 

dq 
4 

bl 

ldb I 
dF (19) 

3b~ 

Integration of Eq (19) between the limits (F*,~/*) 
and (F,q) gives the inverse solution for the post- 
penetration period : 

&[, , ] B2F=B2F *+ (q_U) ~-~ (q*_U) ~-~ 

+ n B 2 1 n [ ( q * - - U ) ]  (20) 
3 [ (~- u) J 

For any chosen value of the dimensionless surface 
temperature the corresponding dimensionless time may 
again be evaluated, and the complete temperature profile 
estimated from Eqs (16) and (17). 

Convective heating 

The temperature response in a plate heated by convection 
may similarly be obtained but it should be noted that, 
because of the nonlinear nature of the problem, the 
solution is not symmetrical with the cooling problem. For 
completeness the solution to the heating problem is 
included here. Temperatures are now rendered 
dimensionless with respect to the environment 
temperature T,, and the surface boundary flux condition 
replacing Eq (13) is: 

_ a l ( =  _ b l ) = B (  1 _fl)n (21) 

The resulting pre-penetration solution is: 

2[ (1-7)  I 
BZF=3[i2n- 1)(1 _//)2.-1 (2n-2) (1 -3)  2"-2 

, [ ,  , ]] 
+(1 - u) 2o-= 2 ~ + 2 ~ 5 5  2(1 _/~)2. 

(22) 

The dimensionless surface temperature at penetration, fl*, 
may be estimated from the equation: 

B(fl* - 1)" - 2(t, - fl*) = 0 {23) 

and the solution in the post-penetration period is given 
by: 

8~F=8~F* ~ ~-~)"-' ~,_r).-,  

+n~ 2 , F /~ * -  ~11 
J 

where F* is calculated from Eq (22) with fl = fl*. 

(24) 
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Results 
For the purposes of assessing the accuracy of the integral 
method a comparison was first of all made between the 
analytical and integral solutions for the problem of a plate 
cooling by forced convection. The analytical solution of 
this problem is given by Carslaw and Jaeger 3 and may be 
conveniently rewritten as: 

( 1 - U ) , ~  2sin22i exp(_~2F ) (25) 
~/=U+ -= 22,+ sin 2;W 

where 21 are the successive roots of the equation 

B cos 2 = 2 sin 2 (26) 

The number of terms required to obtain 
convergence of Eq (25), particularly when B is large, tends 
to infinity as F---,0. Since only the first nine terms of the 
series were used for the purposes of comparison in this 

Table 1 Comparison of analytical, numerical 
and integral solutions for the cases U=0.25,  B 
=0.1,1 a n d l 0 w i t h n  =1 

B 

Integral Numerical 
Analytical (Eqs (Crank- 

B2F (Eq (25)) (27/28)) Nicolson) 

0.1 0.373x 10 -2 0.9501 0.9500 0.9501 
0.114x 10 -1 0.8997 0.9000 0.8998 
0.197x 10 -1 0.8496 0.8500 0.8497 
0286× 10 -1 0.8001 0.8000 0.8002 
0.385 x 10 -1 0.7499 0.7500 0.7500 
0.494x 10 -1 0.6999 0.7000 0.6999 
0.616x 10 -1 0.6498 0.6500 0.6498 
0.754x 10 -1 0.5998 0.6000 0.5998 
0.913x 10 -1 0.5499 0.5500 0.5499 
0.110 0.5003 0.5000 0.5002 
0.1 33 0.4504 0.4500 0.4503 
0.1 63 0.3998 0.4000 0.3998 
0.205 0.3498 0.3500 0.3498 
0.276 0.3002 0.3000 0.3002 

1 0.332x 10 -2 0.9512 0.9500 0.9537 
0.151× 10 -T 0.9064 0.9000 0.9064 
O387x 10 -1 0.8588 0,8500 0.8588 
0.797x 10 - t  0.8102 0.8000 0.8103 
0.146 0.7611 0.7500 0.7611 
0.287 0.6964 0.7000 0,6964 
0.444 0.6447 0.6500 0.6446 
0.622 0.5955 0.6000 0.5954 
0.827 0.5468 0.5500 0.5467 
1.070 0.4979 0.5000 0.4978 
1.370 0.4486 0.4500 0.4484 
1.750 0.3999 0.4000 0.3997 
2.290 0.3505 0.3500 0.3503 
3.220 0.3005 0.3000 0.3002 

10 0.252 0.7088 0.7000 0.7111 
0.419 0.6601 0.6500 0.6605 
0.689 0.6090 0.6000 0.6092 
1.140 0.5572 0.5500 0.5573 
1.930 0.5054 0.5000 0.5055 
3.470 0.4530 0.4500 0.4531 
6.930 0.4009 0.4000 0.4009 

20.1 O0 0.3415 0.3500 0.3415 
50.200 0.2980 0.3000 0.2979 

paper the results obtained using Eq (25) must be treated 
with caution during the starting period of the cooling 
process. This starting period becomes longer as B 
increases. The numerical solution of this problem also 
exhibits a similar instability. 

The pre-penetration integral solution, obtained 
from Eqs (12) and (13) with n= 1, is: 

3L(~- u) L l - u j j  3L~t- u j  

and the corresponding post-penetration solution is: 

which applies once the dimensionless surface temperature 
has fallen below t/* = (BU + 2)/(B + 2). 

The cooling history of a plate may be predicted 
using Eqs (27) and (28) with a pocket calculator. A 
comparison of the results obtained using Eq(25) and 
those obtained using Eqs (27) and (28) is given in Table 1. 

Also included in Table 1 is the prediction of the 
cooling history for the same problem obtained using a 
Crank-Nicolson 4 technique. The particular form of the 
Crank-Nicolson method used here employed central 
difference approximations for time and space derivatives. 
Stability of the method depends upon the value of F. At 
high values of F Cameron s has shown that five space 
intervals are sufficient to achieve accurate results. 
However, at lower values of F (ie short elapsed times) the 
number of required space intervals increases. The results 
given in Table 1 were obtained using a variable 
computational net in such a way as to obtain reasonable 
agreement with the analytical solution. 

The conclusions which may be drawn from the 
data in Table I are therefore that the integral analysis 
produces results which are accurate enough for many 
engineering purposes and that the Crank-Nicolson 
scheme may be adopted as a secondary standard for use in 
testing the performance of the integral analysis of the free 
convection problem. 

Figs 1, 2 and 3 show the dimensionless surface 

1 ,0  _~. o a i o t  = o .  

~3 ' ~ 0 Semi-infinite solid 

0.4 ~0, 

0.2 0 _ z~Z~ z k  ~, .~,.~i i 

o I I 
10-3 10 - 2  10 -1  1 10 10 2 

B2F 
Fig I Dimensionless surface temperature histories of  a 
plate cooled by natural convection, n = 4/3, U = O, B = 0.1, 1 
and lO; points from Eqs (14) and (20), lines from Crank- 
Nicolson solution 
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1.0 "••- ~ 0 Biot = 0.1 
q,  O,,, ~. 1.o 

0.8- ~ ~ II 10.0 
 Se iio.niteso,,d 

~ "~. 

0.4 "~)~(X. 
~ ~ "'l 

O.2 I I I I 
10 -3 10 -2 10 -1 1 10 102 

B2F 
Fig 2 Dimensionless .surface temperature histories of a 
plate cooled by natural convection, n=4/3, U=0.25, 
B=O.1, 1 and 10; points from Eqs (14) and (20), lines from 
Crank Nicolson solution 

1.0 

~ ~  0 Biot : 0.1 
0.9- u ~ , ~  ~_ 1.0 

~ \  • ~o.o 

0.8 -- ~ '~ O Semi-infinite solid 

0.7 --  ' ~ .  

0.5 I I " ' I  \1 
10-3 10 2 10-1 1 10 10 2 

B2F 

Fig 3 Dimensionless surface temperature histories of a 
plate cooled by natural convection, n = 4/3, U = 0.5, B = 0.1, 
1 and 10; points from Eqs (14) and (20), lines from Crank 
N icolson solution 

temperature histories of a plate cooling by turbulent 
natural convection for values of U = 0, 0.25 and 0.5. In 
each case values of the Biot modulus, representing a range 
of possible practical situations, are 0.1, 1 and 10. 

The curves in Figs 1, 2 and 3 were produced using 
the Crank-Nicolson scheme. Since the heat transfer 
coefficient was a function of temperature the variation of 
the coefficient was treated by using sufficient time 
intervals to eliminate any significant errors. The points in 
Figs 1, 2 and 3 were predicted using Eqs (14) and (20). 

0.8 -- " ~ ~  

0.6 - ~ ~  ~ ~ \  

0.4 
n = I, Exact, Eq. (25) ~ \ \  

-- n = 4/3, Integral, Eqs (14) and (20) 

o.2 I I I 
10 -3 10 -2 10 -1 1 10 

B2F 

Fig 4 Dimensionless surface temperature histories of a 
plate cooled by forced convection ( n = l )  and natural 
convection (n =4/3)for U =0.25, B= 1 

Fig 4 shows a comparison of the predicted 
dimensionless surface temperature histories of a plate 
cooling by forced convection (Eq (25)) and by natural 
convection (Eqs (14) and (20)) for the case U = 0.25, B = 1. 

Conclusions 

An approximate solution of the nonlinear problem of 
transient conduction in a plate with a free convection 
boundary condition has been shown to exist in terms of 
elementary functions. 

The related solution for the linear forced 
convection boundary condition is shown to agree well 
with the exact solution. The integral solution for the free 
convection boundary condition is shown to agree well 
with a numerical solution. 

Appreciable differences can occur between the 
cooling histories of a plate subjected to either free or 
forced convection for similar values of the Biot modulus. 

The utility of the integral solutions for both free 
and forced convection boundary conditions is such that a 
numerical result for any practical problem can be 
obtained using a pocket calculator. Alternative methods 
require considerable computing power to cover a similar 
range of F and B. 
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